Nodules Initiated by Rhizobium meliloti Exopolysaccharide Mutants Lack a Discrete, Persistent Nodule Meristem.

نویسندگان

  • C Yang
  • E R Signer
  • A M Hirsch
چکیده

Infection of alfalfa with Rhizobium meliloti exo mutants deficient in exopolysaccharide results in abnormal root nodules that are devoid of bacteria and fail to fix nitrogen. Here we report further characterization of these abnormal nodules. Tightly curled root hairs or shepherd's crooks were found after inoculation with Rm 1021-derived exo mutants, but curling was delayed compared with wild-type Rm 1021. Infection threads were initiated in curled root hairs by mutants as well as by wild-type R. meliloti, but the exo mutant-induced threads aborted within the peripheral cells of the developing nodule. Also, nodules elicited by Rm 1021-derived exo mutants were more likely to develop on secondary roots than on the primary root. In contrast with wild-type R. meliloti-induced nodules, the exo mutant-induced nodules lacked a well defined apical meristem, presumably due to the abortion of the infection threads. The relationship of these findings to the physiology of nodule development is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

InvestigationsofRhizobiumbio ¢ lmformation

The development of nitrogen-fixing nodules of the Rhizobium-legume symbiosis, especially the early stages of root hair deformation and curling, infection thread formation, and nodule initiation, has been well studied from a genetic standpoint. In contrast, the factors important for the colonization of surfaces by rhizobia, including roots–an important prerequisite for nodule formation–have not ...

متن کامل

A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion.

Rhizobium meliloti strain SU47 produces the calcofluor-binding exopolysaccharide, succinoglycan, that is required for alfalfa root nodule invasion. Strains derived from R. meliloti SU47 secreted an acidic exopolysaccharide, EPSb, that replaced succinoglycan in nodule invasion. EPSb, which has not formerly been identified among the Rhizobiaceae, consisted of the repeating unit 4,6-O-(1-carboxyet...

متن کامل

Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens.

Symbiotically essential genes have been identified in Rhizobium meliloti that are structurally and functionally related to chromosomal virulence (chv) genes of Agrobacterium tumefaciens. Homologous sequences also exist in the genomes of other fast-growing rhizobia including Rhizobium trifolii, Rhizobium leguminosarum, and Rhizobium phaseoli. In Agrobacterium, the chvA and chvB loci are known to...

متن کامل

Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors.

Rhizobium nod genes are essential for root hair deformation and cortical cell division, early stages in the development of nitrogen-fixing root nodules. Nod(-) mutants are unable to initiate nodules on legume roots. We observed that N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid, compounds known to function as auxin transport inhibitors, induced nodule-like structures on alfalfa ro...

متن کامل

Rhizobium meliloti exopolysaccharides: genetic analyses and symbiotic importance.

Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 98 1  شماره 

صفحات  -

تاریخ انتشار 1992